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Research scope
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UNESCO Codes

- (120304) Artificial Intelligence

- (120305) Automated production systems

- (331105) Electrical control equipment

- (331107) Electronic Instruments

- (331101) Automation Technology

- (331102) Control engineering

Research lines

- Intelligent systems for modeling, optimization and control

- Fault and anomaly detection using traditional and intelligent techniques

- Knowledge creation for control, diagnosis and fault-tolerant systems

- New sensors, robust sensors and virtual sensors

- Artificial intelligence, neural networks and unsupervised learning



Technological offer
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Services

- Data processing and analysis

- Modeling and simulation

- Programming of virtual instruments

- Automation and process optimization

- Development of virtual and electronic instrumentation

- Design and development of electronic power converters and circuits

Resources

- Mechanical vibration analysis system

- Embedded systems development platforms

- Platforms, and means of development, of automated systems

- Development of control, supervision and diagnosis systems

- Pilot plants for development and prototyping

- Robotic and computer vision systems

- Machining and additive manufacturing



Examples of research and transfer lines
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Combined Cycle Power Plant
Endesa - As Pontes



Examples of research and transfer lines
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Steam turbine 
sealing circuit



Examples of research and transfer lines
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Metallurgy
Rolling process



Examples of research and transfer lines
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Bioclimatic house
Sotavento Galicia



Examples of research and transfer lines
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Examples of research and transfer lines
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Examples of research and transfer lines
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Geothermal heat 
exchanger installation:
- Modeling 
- Fault detection

Cluster nº
Train 
samples

Test 
samples

MSE

ANN-MLP Polynomial LS-SVR

Cluster 1 9714 4874 0.00632 0.00882 0.00678

Cluster 2 6507 3257 0.00493 0.00926 0.00513

Cluster 3 12,433 6229 0.00613 0.01034 0.00671

Cluster 4 6479 3206 0.00598 0.00974 0.00632



Examples of research and transfer lines
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Anesthetic Control
ULL-UDC-HUC



Examples of research and transfer lines
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Examples of research and transfer lines
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ANI:
- Modeling 
- Anomaly detection



Examples of research and transfer lines
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Examples of research and transfer lines
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Anomaly detection (Traditional and emergent techniques)

Epoxy mixture – Control systems

Fault detection, for predictive and 
conditional maintenance

Systems for development of fault and 
anomaly detection algorithms



Examples of research and transfer lines

18

Development of electronic and virtual 
instrumentation and electronic converters

EDAR Bens



Examples of research and transfer lines
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Examples of research and transfer lines

20

QCM-MIP:
- Characterization 
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Examples of research and transfer lines
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QCM-MIP:
- Characterization 
- Biosensor



Examples of research and transfer lines
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Laboratory plants 
development for research 
in teaching in control



Examples of research and transfer lines
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Examples of research and transfer lines
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Basic research for 
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A HYBRID REGRESSION SYSTEM 
BASED ON LOCAL MODELS FOR 
SOLAR ENERGY PREDICTION
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Case of Study
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Case of Study
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Case of Study
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Case of Study
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Case of Study
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Data description summarized:

• Data set of 36,292 samples (12 months)

• Two inputs: 

– Flow in the solar thermal circuit

– Solar radiation

• One output:

– Thermal power generated by the solar thermal system

 Equipment

• Power meter: Kamstrup type Multichannel 601, it can measure 
thermal power, flow and temperature.

• Radiation meter: Apogee model PYR-P, it can measure solar radiation 
with a sensitivity of 0.200 mV per W/m2.
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Modeling approach and comparison:
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Modeling approach and comparison:
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Methods

• Clustering:

– Principal Components Analysis (PCA)

– Self-organizing map (SOM)

• Regression:

– Artificial Neural Network (ANN)

– Least Square Support Vector Machine (SVM: LS-SVM)

• Cross validation of 10 folds for all regression techniques.
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Clustering Results
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• SOM technique can detect three

different clusters.

• The sample cluster assignment is

made by the euclidean distance.



A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Clustering Results
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Clustering Results
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Regression results
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Graphical results
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Graphical results
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A Hybrid Regression System Based on Local Models for 

Solar Energy Prediction

 Conclusions

• It has been achieved a very nice accuracy.

• The hybrid proposal gives better results than the non hybrid one.

• The cluster creation process is not fully automatic, this fact can be 
good or bad.
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HYBRID INTELLIGENT MODEL 
METHODOLOGY
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Cluster 1

Cluster 2
Cluster 3

Hybrid intelligent model Methodology

 The system - Operating points
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Hybrid intelligent model Methodology

 Modeling process
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering (automatic, not like in the previous case).

– Kmeans.
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

– MLP.
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

– MLP.
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

– MLP.

– LS SVR
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

– MLP.

– LS SVR
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

• Validation.
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

• Validation.

• Best configuration.
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Hybrid intelligent model Methodology

 Modeling process.

• Clustering.

• Modeling.

• Validation.

• Best configuration.
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HYBRID INTELLIGENT MODEL FOR 
SOLAR ENERGY PREDICTION
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Hybrid Intelligent Model for Solar Energy Prediction

 Case of Study (the same)
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Hybrid Intelligent Model for Solar Energy Prediction

 The model approach
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Hybrid Intelligent Model for Solar Energy Prediction

 Techniques:

• K-Means

• Artificial Neural Networks (MLP)

• Polynomial Regression

• Support Vector Machines for Regression
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Hybrid Intelligent Model for Solar Energy Prediction

 Results:
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Hybrid Intelligent Model for Solar Energy Prediction

 Results:
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Hybrid Intelligent Model for Solar Energy Prediction

 Results:
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Hybrid Intelligent Model for Solar Energy Prediction

 Comparison between global and hybrid models:
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Hybrid Intelligent Model for Solar Energy Prediction

 Graphical Results:
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GEOTHERMAL HEAT EXCHANGER 
MODELING
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Geothermal Heat Exchanger Modeling

 Case of Study
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Geothermal Heat Exchanger Modeling

 Case of Study
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Geothermal Heat Exchanger Modeling

 Case of Study
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Geothermal Heat Exchanger Modeling

 Case of Study

66

Heat Emission Unit

Solar thermal generation

Biomass boiler generation

Energy accumulation

Solar Acc.

Preheating 

DHW

Emission by Unit Heater

Emission by underfloor 

heating

DHW

1

2

Geothermal heat pump

 generation

Horizontal ground collectors

Heat pump

3.1

3.2

5

4

8

6.1

6.2

Mains water/ Well

Energy accumulation

DHW Acc.

7

GENERATION ACCUMULATION CONSUMPTION

OR



Geothermal Heat Exchanger Modeling

 Case of Study
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Geothermal Heat Exchanger Modeling

 Case of Study
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Geothermal Heat Exchanger Modeling

 Case of Study
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Geothermal Heat Exchanger Modeling

 Dataset and its processing

• It consist on the temperatures at each sensor during one year.

• There were missing data and errors during the acquisition.

• Totally, there were 52,705 samples.

• The dataset was filtered and cleaned to discard the erroneous data.

• The dataset have 52,699 samples after conditioning.
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Geothermal Heat Exchanger Modeling

 Dataset understanding.

• The sensors are inside the house.

• This measurements must be corrected.

• The difference between the input and the output is due to the energy 
extracted from the ground.
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Geothermal Heat Exchanger Modeling

 Dataset understanding.

• This dataset was corrected by fixing the maximum temperature to the 
outside one.
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Geothermal Heat Exchanger Modeling

 Dataset understanding.

• A specific cycle was insulated for showing the performance.

• More or less 4ºC are obtained.
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Output

Input

Difference• The energy obtained from the 
ground decrease with time when 
the system is in operation.



Geothermal Heat Exchanger Modeling

 Dataset understanding.

• This figure show a full working cycle for the Heat Pump since its put in 
operation
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• It is the difference between the 
output and input of the 
geothermal heat exchanger.

• It is possible to appreciate the 
fast increase of the temperature 
at the beginning of the cycle.

• it is possible to conclude, the 
temperature value is almost 
constant after more or less 
twenty minutes working.



Geothermal Heat Exchanger Modeling

 Dataset understanding.

• If the heat exchanger is running during more time (the triple), the 
decreasing trend of the extracting temperature descends.
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• For the five working cycles 
(chosen randomly), the 
increased temperature has the 
same trend.

• The main difference is the 
maximum temperature attained.

• The reason is due that the 
different graphs are from 
different seasons.

• Then, the performance does not 
depend of the weather directly.



Geothermal Heat Exchanger Modeling

 Objective  Predict ‘Ground Temperature’ value
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Geothermal Heat Exchanger Modeling

 The model approach
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Geothermal Heat Exchanger Modeling

 Techniques:

• K-Means

• Artificial Neural Networks (MLP)

• Polynomial Regression

• Support Vector Machines for Regression
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Geothermal Heat Exchanger Modeling

 Results:

79



Geothermal Heat Exchanger Modeling

 Conclusions:

• All the achieved configurations of the model have a nice performance.

• The better performance correspond to one of the hybrid 
configuration.

• There are multiple reasons that could affect to the geothermal heat 
exchanger.
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ANOMALY DETECTION BASED ON 
VIRTUAL SENSORS
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Anomaly detection based on virtual sensors

 Fundamentals

• The virtual sensor concept.

• Why anomaly detection/fault detection?

82

Predicted 
Signal

Inputs

Max 
Fails

Real 
Signal

Range

Failure 
detected

Sensor 
output

Hybrid 
intelligent 

model
block

Virtual 
sensor 
fault 

detection 
block



Anomaly detection based on virtual sensors

 Implementation
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• Hybrid intelligent model block.

− Modeling process.

> Clustering.

> Modeling.

> Validation.

> Best configuration.



Anomaly detection based on virtual sensors

 Implementation

84

• Virtual sensor fault detection block.

− Fault block.

− Counter block.

− Output selector block.
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Anomaly detection based on virtual sensors

 Implementation
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• Virtual sensor fault detection block.

− Fault block.

− Counter block.

− Output selector block.
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Anomaly detection based on virtual sensors

 Implementation
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• Virtual sensor fault detection block.

− Fault block.

− Counter block.

− Output selector block.
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GEOTHERMAL HEAT EXCHANGER 
ANOMALY DETECTION BASED ON 
VIRTUAL SENSORS
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors

 Case of Study
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors

 Objective  Anomaly detection of S-315 sensor

89

The horizontal 

heat exchanger 

schema

Temperature sensor S315

• Possible anomaly reasons:

 Sensor bad reading

 Noise

 Faulty sensor

 Electronic failure

 …



Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors

 The approach
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors

 The hybrid model inputs:

• Experiment A: Prediction of sensor S-315 based on S-309 to S-316 
signals

• Experiment B: Prediction of sensor S-315 based on S-309 to S-316 
signals and their previous states

• Experiment C: Prediction of sensor S-315 based on S-309 to S-316 
signals and S-315 previous state

• Experiment D: Prediction of sensor S-315 based on S-309 to S-316 
signals, their previous states, and S-315 previous state
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors

 The contemplated regression techniques:

• Shallow Neural Networks (MLP Advanced)

• K-Nearest Neighbors

• Adaptive Boosting

• Random Decision Forests

• Extremely Randomized Trees

• Gradient Boosting

 Two kid of models with them:

• Global models: In this case the whole data set is used for training a 
single regressor.

• Hybrid models: In this case, the data set is split into two groups in 
accordance to day and night criteria.
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors
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Day model errors (multiplied 

by 10-5) for extremely

randomized trees (ET), 

gradient boosting (GB), 

multi-layer perceptron

(MLP), random forest (RF), 

adaptive boosting (AB), and 
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Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors
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Night model errors 

(multiplied by 10-5) for

extremely randomized trees

(ET), gradient boosting

(GB), multi-layer perceptron

(MLP), random forest (RF), 

adaptive boosting (AB), and 

k-nearest neighbors (K-NN)



Geothermal Heat Exchanger Anomaly Detection Based 

on Virtual Sensors

 Conclusions

• Anomaly detection is accomplished by measuring the deviation of the 
model with the real value of the S-315 temperature sensor.

• For ranges greater than 2% the proposal has a nice performance.

• It is possible both, the anomaly detection and the value recovery if it 
exist.
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