

Máster Univ en Eficiencia Energética y Sostenibilidad José Luis Calvo Rolle

Optimizing bioclimatic houses with intelligent systems

Grupo de Investigación Ciencia y Técnica Cibernética July 27th, 2022

Table of contents

- Basic information
- Research scope
- Technological offer
- Examples of research and transfer lines
- A Hybrid Regression System Based on Local Models for Solar Energy Prediction
- Hybrid intelligent model Methodology
- Hybrid Intelligent Model for Solar Energy Prediction
- Geothermal Heat Exchanger modeling
- Anomaly detection based on virtual sensors
- Geothermal Heat Exchanger Anomaly detection based on virtual sensors
- Anomaly detection based on one-class
- Analysis of the seasonality in a geothermal system using projectionist and clustering methods
- Adaptive-predictive proposal for control systems

Basic information

Research group name: Cybernetic Science and Technique (CTC).

	General data
Coordinator Date of birth	Dr. José Luis Calvo Rolle 10/05/2005
Department adscription.	Industrial Engineering
Research center/s	"Technological Research Center" and "Centre for Information and
Code / Members Qty	Communications Technology Research" G00087 / 21 members

Contact

Address	Avda. 19 de febrero s/n 15405 Ferrol, A Coruña, Spain
phone n ^o	+34 881013117
Fax	+34 981337401
email	jlcalvo@udc.es
web	http://investigacion.udc.es/es/Research/Details/G00087

Research scope

UNESCO Codes

- (120304) Artificial Intelligence
- (120305) Automated production systems
- (331105) Electrical control equipment
- (331107) Electronic Instruments
- (331101) Automation Technology
- (331102) Control engineering

Research lines

- Intelligent systems for modeling, optimization and control
- Fault and anomaly detection using traditional and intelligent techniques
- Knowledge creation for control, diagnosis and fault-tolerant systems
- New sensors, robust sensors and virtual sensors
- Artificial intelligence, neural networks and unsupervised learning

Technological offer

Services

- Data processing and analysis
- Modeling and simulation
- Programming of virtual instruments
- Automation and process optimization
- Development of virtual and electronic instrumentation
- Design and development of electronic power converters and circuits

Resources

- Mechanical vibration analysis system
- Embedded systems development platforms
- Platforms, and means of development, of automated systems
- Development of control, supervision and diagnosis systems
- Pilot plants for development and prototyping
- Robotic and computer vision systems
- Machining and additive manufacturing

- Modeling
- Fault detection

Anesthetic Control

Brugada Syndrome UDC - Uniovi - HCA

Intelligent classifiers:

- Time domain parameters
- Frequency parameters
- Time series

Anomaly detection (Traditional and emergent techniques) Epoxy mixture – Control systems

Fault detection, for predictive and conditional maintenance

Systems for development of fault and anomaly detection algorithms

Development of electronic and virtual instrumentation and electronic converters

Laboratory plants development for research in teaching in control

Intelligent Digital Industry / Industrial Computing and Automation - ("IDI/IIA")

A HYBRID REGRESSION SYSTEM BASED ON LOCAL MODELS FOR SOLAR ENERGY PREDICTION

- Data description summarized:
 - Data set of 36,292 samples (12 months)
 - Two inputs:
 - Flow in the solar thermal circuit
 - Solar radiation
 - One output:
 - Thermal power generated by the solar thermal system
- Equipment
 - Power meter: Kamstrup type Multichannel 601, it can measure thermal power, flow and temperature.
 - Radiation meter: Apogee model PYR-P, it can measure solar radiation with a sensitivity of 0.200 mV per W/m2.

Modeling approach and comparison:

Modeling approach and comparison:

- Methods
 - Clustering:
 - Principal Components Analysis (PCA)
 - Self-organizing map (SOM)
 - Regression:
 - Artificial Neural Network (ANN)
 - Least Square Support Vector Machine (SVM: LS-SVM)
 - Cross validation of 10 folds for all regression techniques.

Clustering Results

- SOM technique can detect three different clusters.
- The sample cluster assignment is made by the euclidean distance.

Clustering Results

Clustering Results

Month	Total		Cluster 1	l	Cluster 2	2	Cluster 3	
	Train	Test	Train	Test	Train	Test	Train	Test
January (2011)	2221	1111	1571	776	250	144	400	191
February (2011)	2205	1102	1568	769	211	104	426	229
March (2011)	2230	1115	1458	733	236	130	536	252
April (2011)	1819	909	948	453	206	126	665	330
May (2011)	2012	1006	1107	560	268	131	637	315
June (2011)	2040	1021	1189	600	260	136	591	285
July (2011)	2000	1000	1229	613	245	116	526	271
August (2011)	2001	1000	1211	604	237	133	553	263
September (2010)	2880	1440	1940	971	281	144	659	325
October (2010)	1400	700	817	412	185	73	398	215
November (2010)	1384	693	905	459	189	96	290	138
December (2010)	2002	1001	1414	722	232	93	356	186

Total number of samples for training and testing for each month before and after clustering.

Regression results

Month	Hybrid											
	LS-SVR				ANN	ANN						
	C1	C2	C3	Total	C1	C2	C3	Total	Total			
January	0.0146	0.4211	0.0870	0.0494	0.0102	0.5184	0.0648	0.0369	0.0358			
February	0.3973	0.3501	0.0796	0.0316	0.6518	0.3810	0.0813	0.0323	0.0316			
March	0.3090	0.1961	0.0733	0.0230	0.2716	0.2160	0.0612	0.0199	0.0191			
April	0.6294	0.0540	0.0120	0.0113	0.8663	0.1649	0.0235	0.0246	0.0113			
May	0.2962	0.3278	0.2352	0.0601	0.4166	0.4083	0.2370	0.0621	0.0601			
June	0.1770	0.3144	0.1954	0.0508	0.7445	0.3387	0.1924	0.0517	0.0501			
July	0.3196	0.3810	0.1937	0.0466	0.4013	0.4185	0.2199	0.0527	0.0466			
August	0.1739	0.3907	0.1741	0.0393	0.7408	0.3667	0.1977	0.0441	0.0390			
September	0.7069	0.2751	0.0948	0.0364	0.8510	0.2620	0.0981	0.0376	0.0363			
October	0.8036	0.1799	0.1391	0.0319	0.8341	0.2300	0.1443	0.0359	0.0319			
November	0.2013	0.3809	0.1441	0.0355	0.8608	0.4082	0.1364	0.0447	0.0322			
December	0.5034	0.6418	0.1654	0.0510	0.1649	0.6032	0.2017	0.0627	0.0489			

Values of NMSE of the hybrid system.

NMSE of non-hybrid system.

Non-hybr	Non-hybrid											
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
LS-SVR	0.129	0.159	0.116	0.115	0.194	0.211	0.187	0.183	0.156	0.105	0.120	0.219
ANN	0.181	0.203	0.128	0.098	0.299	0.246	0.269	0.187	0.168	0.134	0.083	0.227

Graphical results

Graphical results

- Conclusions
 - It has been achieved a very nice accuracy.
 - The hybrid proposal gives better results than the non hybrid one.
 - The cluster creation process is not fully automatic, this fact can be good or bad.

HYBRID INTELLIGENT MODEL METHODOLOGY

The system - Operating points

Modeling process

- Modeling process.
 - Clustering (automatic, not like in the previous case).
 - Kmeans.

- Modeling process.
 - Clustering.
 - Modeling.
 - MLP.

- Modeling process.
 - Clustering.
 - Modeling.
 - MLP.

$$h = f_{\theta 1} \left(xW_1 - u_1 \right)$$
$$y = f_{\theta 2} \left(hW_2 - u_2 \right)$$

- Modeling process.
 - Clustering.
 - Modeling.
 - MLP.
 - LS SVR

$$y = f(X) = w^T \delta(x) + b$$

- Modeling process.
 - Clustering.
 - Modeling.
 - MLP.
 - LS SVR

$$y = f(X) = w^T \delta(x) + b$$

- Modeling process.
 - Clustering.
 - Modeling.
 - Validation.

- Modeling process.
 - Clustering.
 - Modeling.
 - Validation.
 - Best configuration.

- Modeling process.
 - Clustering.
 - Modeling.
 - Validation.
 - Best configuration.

HYBRID INTELLIGENT MODEL FOR SOLAR ENERGY PREDICTION

Case of Study (the same)

- Techniques:
 - K-Means
 - Artificial Neural Networks (MLP)
 - Polynomial Regression
 - Support Vector Machines for Regression

Results:

	Chabal		Hybrid Model (Local Models)											
	Global	2	3	4	5	6	7	8	9	10				
Cl-1	16.8972	3.1161	1.0321	5.9668	6.2402	5.6794	6.3455	6.3268	6.1555	5.9393				
Cl-2		21.8021	9.8955	0.4348	6.9023	0.6041	9.0305	8.0789	9.4405	12.1097				
Cl-3			26.6203	9.7590	0.3851	0.3093	0.5586	7.6646	7.6268	8.0194				
Cl-4				26.2704	19.9626	7.4397	0.2725	0.5744	10.5137	10.7156				
Cl-5					26.4265	21.2670	7.0769	0.2332	0.5387	11.0445				
Cl-6						26.1993	22.3688	14.7125	0.2308	0.4686				
Cl-7							25.9529	19.6236	15.8058	0.2294				
Cl-8								31.8514	18.4699	10.7052				
Cl-9									32.7775	25.8231				
Cl-10										33.1709				

Table 6. Mean squared error (MSE) for each individual hybrid model; all values $\times 10^{-4}$.

Results:

	<u>C1 1 1</u>	Hybrid Model (Local Models)											
	Global	2	3	4	5	6	7	8	9	10			
Cl-1	0.0278	0.0080	0.0060	0.0186	0.0199	0.0182	0.0190	0.0197	0.0196	0.0186			
Cl-2		0.0346	0.0193	0.0044	0.0157	0.0053	0.0204	0.0192	0.0146	0.0143			
Cl-3			0.0403	0.0194	0.0043	0.0037	0.0050	0.0143	0.0200	0.0185			
Cl-4				0.0399	0.0326	0.0170	0.0037	0.0051	0.0182	0.0194			
Cl-5					0.0398	0.0338	0.0148	0.0034	0.0050	0.0238			
Cl-6						0.0397	0.0354	0.0269	0.0034	0.0047			
Cl-7							0.0394	0.0337	0.0296	0.0034			
Cl-8								0.0448	0.0321	0.0242			
C1-9									0.0455	0.0392			
Cl-10										0.0463			

Table 5. Mean absolute error (MAE) for each individual hybrid model.

Results:

		Hybrid Model (Local Models)											
	Global	2	3	4	5	6	7	8	9	10			
Cl-1	ANN-14	ANN-5	ANN-14	ANN-9	ANN-4	ANN-10	ANN-12	ANN-6	ANN-9	ANN-9			
Cl-2		ANN-13	ANN-14	ANN-14	ANN-5	ANN-6	LS-SVR	LS-SVR	LS-SVR	LS-SVR			
Cl-3			ANN-14	ANN-10	ANN-12	Poly-1	ANN-14	ANN-4	ANN-8	ANN-4			
Cl-4				ANN-15	ANN-14	ANN-3	Poly-1	ANN-12	ANN-6	ANN-10			
Cl-5					ANN-14	ANN-8	ANN-3	ANN-6	ANN-12	LS-SVR			
Cl-6						ANN-15	ANN-9	ANN-8	ANN-6	ANN-10			
Cl-7							ANN-14	ANN-10	LS-SVR	ANN-6			
Cl-8								ANN-13	ANN-11	LS-SVR			
Cl-9									ANN-14	ANN-11			
Cl-10										ANN-10			

Table 7. Configuration for each individual hybrid model.

Table 8. Error values for the different hybrid configurations.

				Η	lybrid M	odel (Loc	al Model	s)		
	Global	2	3	4	5	6	7	8	9	10
MSE	0.0016	0.0016	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0014	0.0014
MAE	0.0272	0.0270	0.0258	0.0257	0.0258	0.0259	0.0259	0.0255	0.0247	0.0250
NMSE	0.1116	0.1095	0.1038	0.1023	0.1036	0.1030	0.1047	0.1005	0.0977	0.1001

Comparison between global and hybrid models:

	Hybrid Model				(Global Mo	dels			
	with 9 Clusters	LS-SVR	Poly-1	Poly-2	ANN-3	ANN-5	ANN-6	ANN-9	ANN-11	ANN-13
MSE	0.0014	0.0018	0.0024	0.0025	0.0022	0.0020	0.0020	0.0020	0.0018	0.0017
MAE	0.0247	0.0283	0.0324	0.0314	0.0320	0.0304	0.0298	0.0288	0.0282	0.0279
NMSE	0.0977	0.1161	0.1489	0.1571	0.1415	0.1279	0.1240	0.1277	0.1117	0.1073

Table 9. Hybrid intelligent approach vs. global models with different regression algorithms.

• Graphical Results:

GEOTHERMAL HEAT EXCHANGER MODELING

Case of Study

Case of Study

Case of Study

Geothermal Energy for the Home

Case of Study

Case of Study

Case of Study

The heat pump

The horizontal heat exchanger

Case of Study

The horizontal heat exchanger

- Dataset and its processing
 - It consist on the temperatures at each sensor during one year.
 - There were missing data and errors during the acquisition.
 - Totally, there were 52,705 samples.
 - The dataset was filtered and cleaned to discard the erroneous data.
 - The dataset have 52,699 samples after conditioning.

- Dataset understanding.
 - The sensors are inside the house.
 - This measurements must be corrected.
 - The difference between the input and the output is due to the energy extracted from the ground.

Output

- Dataset understanding.
 - This dataset was corrected by fixing the maximum temperature to the outside one.

- Dataset understanding.
 - A specific cycle was insulated for showing the performance.
 - More or less 4ºC are obtained.
 - The energy obtained from the ground decrease with time when the system is in operation.

- Dataset understanding.
 - This figure show a full working cycle for the Heat Pump since its put in operation
 - It is the difference between the output and input of the geothermal heat exchanger.
 - It is possible to appreciate the fast increase of the temperature at the beginning of the cycle.
 - it is possible to conclude, the temperature value is almost constant after more or less twenty minutes working.

- Dataset understanding.
 - If the heat exchanger is running during more time (the triple), the decreasing trend of the extracting temperature descends.
 - For the five working cycles (chosen randomly), the increased temperature has the same trend.
 - The main difference is the maximum temperature attained.
 - The reason is due that the different graphs are from different seasons.
 - Then, the performance does not depend of the weather directly.

Objective → Predict 'Ground Temperature' value

The model approach

- Techniques:
 - K-Means
 - Artificial Neural Networks (MLP)
 - Polynomial Regression
 - Support Vector Machines for Regression

Results:						Clusters quantity	Cluster number	Train	Test	Total
						No clusters		35,133	17,566	52,699
						3 Clusters				
							1	10,244	5077	15,321
							2	14,714	7369	22,083
							3	10,175	5120	15,295
						4 Clusters				
							1	9714	4874	14,588
							2	6507	3257	9764
							3	12,433	6229	18,662
							4	6479	3206	9685
MSE for different regression techniques-4 clusters.					5 Clusters					
							1	3443	1722	5165
Cluster no	Train samples	Test samples	MSE				2	6441	3184	9625
							3	5954	2981	8935
			ANN-MLP	Polynomial	LS-SVR		4	12,422	6227	18,649
							5	6873	3452	10,325
Cluster 1	9714	4874	0.00632	0.00882	0.00678	6 Chustors				
Cluster 2	6507	3257	0.00493	0.00926	0.00513	o clusters	1	6870	3450	10 320
Cluster 3	12,433	6229	0.00613	0.01034	0.00671		2	2420	1646	5076
Cluster 4	6479	3206	0.00598	0.00974	0.00632		2	4842	2557	7399
							4	10 536	5286	15 822
							5	4473	2217	6690
MSE compari	son.						6	4982	2410	7392
Model type No of clustors MSE					7 Clustors	-				
woder type	·		lusters		WIGE	7 Clusters	1	4660	2454	7114
Clobal model 0.02			0.0221		1	4000	2434	10 614		
Local models		3 Clust	ers		0.0076		2	3694	1891	5585
		4 Clusters			0.0059		4	4980	2405	7385
		5 Clust	ers		0.0069		5	3430	1646	5076
		6 Clusters		0.0063		6	6870	3450	10 320	
		7 Clusters		0.0121		7	4433	2172	6605	
		, crust			010121		,		2172	0005

- Conclusions:
 - All the achieved configurations of the model have a nice performance.
 - The better performance correspond to one of the hybrid configuration.
 - There are multiple reasons that could affect to the geothermal heat exchanger.

ANOMALY DETECTION BASED ON VIRTUAL SENSORS

- Fundamentals
 - The virtual sensor concept.
 - Why anomaly detection/fault detection?

- Implementation
 - Hybrid intelligent model block.
 - Modeling process.
 - > Clustering.
 - > Modeling.
 - > Validation.
 - > Best configuration.

- Implementation
 - Virtual sensor fault detection block.
 - Fault block.
 - Counter block.
 - Output selector block.

- Implementation
 - Virtual sensor fault detection block.
 - Fault block.
 - Counter block.
 - Output selector block.

- Implementation
 - Virtual sensor fault detection block.
 - Fault block.
 - Counter block.
 - Output selector block.

GEOTHERMAL HEAT EXCHANGER ANOMALY DETECTION BASED ON VIRTUAL SENSORS

Case of Study

■ Objective → Anomaly detection of S-315 sensor

The approach

- The hybrid model inputs:
 - Experiment A: Prediction of sensor S-315 based on S-309 to S-316 signals
 - Experiment B: Prediction of sensor S-315 based on S-309 to S-316 signals and their previous states
 - Experiment C: Prediction of sensor S-315 based on S-309 to S-316 signals and S-315 previous state
 - Experiment D: Prediction of sensor S-315 based on S-309 to S-316 signals, their previous states, and S-315 previous state

- The contemplated regression techniques:
 - Shallow Neural Networks (MLP Advanced)
 - K-Nearest Neighbors
 - Adaptive Boosting
 - Random Decision Forests
 - Extremely Randomized Trees
 - Gradient Boosting
- Two kid of models with them:
 - Global models: In this case the whole data set is used for training a single regressor.
 - Hybrid models: In this case, the data set is split into two groups in accordance to day and night criteria.

Error	Experiment	ET	GB	MLP	RF	AB	K-NN
LMLS	А	2.4	24.4	6.0	3.7	2.66	4.76
	В	2.4	21.2	6.7	3.5	3.16	4.76
	С	2.6	21.2	4.5	3.0	2.87	4.76
	D	2.3	16.6	18.7	3.2	3.26	4.76
MAE	А	243.1	880.6	495.3	280.3	263.76	353.77
	В	240.1	868.9	620.1	300.8	317.70	353.77
	С	249.5	821.5	414.9	280.7	277.65	353.77
	D	243.5	768.2	855.9	283.5	336.57	353.77
MAPE	А	29.2	106.0	59.9	33.7	31.72	42.62
	В	28.9	104.6	74.9	36.2	38.24	42.62
	С	30.0	98.9	50.1	33.8	33.40	42.62
	D	29.3	92.5	103.2	34.1	40.52	42.62
MSE	А	4.8	48.8	12.0	7.4	5.32	9.53
	В	4.9	42.5	13.4	7.0	6.33	9.53
	С	5.2	42.5	9.0	6.1	5.75	9.53
	D	4.6	33.2	37.5	6.3	6.51	9.53
NMSE	А	508.4	535.7	979.6	370.6	572.03	108.90
	В	527.9	570.0	250.6	320.7	540.69	108.90
	С	561.2	569.8	867.9	407.3	537.47	108.90
	D	658.0	257.4	1883.6	428.9	502.79	108.90
SMAPE	А	29.3	106.3	59.9	33.7	31.75	42.67
	В	28.9	104.9	75.0	36.2	38.28	42.67
	С	30.0	99.1	50.1	33.8	33.44	42.67
	D	29.3	92.7	103.4	34.1	40.56	42.67

Global model errors (multiplied by 10-5) for extremely randomized trees (ET), gradient boosting (GB), multi-layer perceptron (MLP), random forest (RF), adaptive boosting (AB), and k-nearest neighbors (K-NN)

Error	Experiment	ET	GB	MLP	RF	AB	K-NN
LMLS	А	2.9	15.7	1153.2	3.3	3.56	5.81
	В	3.2	19.5	77.7	3.9	3.96	5.81
	С	3.2	29.5	16.3	3.9	4.15	5.81
	D	3.1	34.1	304.7	4.0	3.73	5.81
MAE	А	232.0	689.1	3079.4	269.9	355.44	363.79
	В	255.1	832.2	1515.3	318.7	332.95	363.79
	С	280.8	1102.7	727.6	321.4	483.44	363.79
	D	278.4	1136.0	1675.1	320.7	407.91	363.79
MAPE	А	27.8	82.8	372.6	32.4	42.75	43.75
	В	30.6	100.2	183.2	38.3	40.00	43.75
	С	33.8	132.8	87.8	38.6	58.27	43.75
	D	33.5	136.8	202.6	38.5	49.10	43.75
MSE	А	5.9	31.5	3457.9	6.7	7.12	11.62
	В	6.3	39.0	157.5	7.8	7.93	11.62
	С	6.4	59.1	32.6	7.9	8.30	11.62
	D	6.2	68.3	672.6	8.0	7.45	11.62
NMSE	А	799.6	783.7	18418.0	544.7	724.68	98.50
	В	425.2	347.0	7103.5	366.3	731.76	98.50
	С	459.0	193.2	1652.2	361.8	111.51	98.50
	D	434.8	147.3	13330.6	408.	733.02	98.50
SMAPE	А	27.9	83.0	349.5	32.4	42.80	43.82
	В	30.7	100.4	184.3	38.3	40.05	43.82
	С	33.8	133.1	88.0	38.7	58.32	43.82
	D	33.5	137.1	198.0	38.6	49.15	43.82

Day model errors (multiplied by 10-5) for extremely randomized trees (ET), gradient boosting (GB), multi-layer perceptron (MLP), random forest (RF), adaptive boosting (AB), and k-nearest neighbors (K-NN)

Error	Experiment	ET	GB	MLP	RF	AB	K-NN
LMLS	А	0.05	0.10	0.3	0.10	0.09	0.07
	В	0.04	0.10	3254.6	0.08	0.10	0.06
	С	0.05	0.10	0.10	0.07	0.09	0.06
	D	0.04	0.10	633.3	0.06	0.10	0.06
MAE	А	38.6	67.8	141.3	55.6	42.00	39.90
	В	33.6	57.6	14477.5	49.5	52.50	35.70
	С	35.3	65.1	110.6	48.1	42.00	37.80
	D	33.3	67.5	5595.9	45.9	52.50	37.80
MAPE	А	4.7	8.2	17.1	6.7	5.09	4.83
	В	4.1	7.0	1754.5	6.0	6.36	4.32
	С	4.3	7.9	13.4	5.8	5.09	4.58
	D	4.0	8.2	678.2	5.6	6.36	4.58
MSE	А	0.11	0.21	0.55	0.20	0.18	0.13
	В	0.08	0.21	6996.17	0.16	0.20	0.11
	С	0.11	0.20	0.20	0.14	0.18	0.12
	D	0.08	0.23	1291.10	0.13	0.20	0.12
NMSE	А	4735.4	8055.6	18847.7	7114.2	6805.56	822.22
	В	2407.6	1427.0	16796.8	5333.3	6388.89	1355.56
	С	5349.2	6283.4	22194.2	5732.9	6805.56	2355.56
	D	3829.9	7114.8	64166.1	3324.2	8055.56	2356.56
SMAPE	А	4.7	8.2	17.1	6.7	5.09	4.83
	В	4.1	7.0	1711.6	6.0	6.36	4.83
	С	4.3	7.9	13.4	5.8	5.09	4.83
	D	4.0	8.2	687.5	5.6	6.36	4.83

Night model errors (multiplied by 10-5) for extremely randomized trees (ET), gradient boosting (GB), multi-layer perceptron (MLP), random forest (RF), adaptive boosting (AB), and k-nearest neighbors (K-NN)

- Conclusions
 - Anomaly detection is accomplished by measuring the deviation of the model with the real value of the S-315 temperature sensor.
 - For ranges greater than 2% the proposal has a nice performance.
 - It is possible both, the anomaly detection and the value recovery if it exist.

Máster Universitario en Eficiencia Energética y Sostenibilidad

Universidade da Coruña

Ciencia y Técnica Cibernética (CTC)

http://investigacion.udc.es/es/Research/Details/G00087

